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We present an open-geometry Fourier modal method based on a new combination of open boundary conditions
and an efficient k-space discretization. The open boundary of the computational domain is obtained using basis
functions that expand the whole space, and the integrals subsequently appearing due to the continuous nature of
the radiation modes are handled using a discretization based on nonuniform sampling of the k space. We apply
the method to a variety of photonic structures and demonstrate that our method leads to significantly improved
convergence with respect to the number of degrees of freedom, which may pave the way for more accurate and
efficient modeling of open nanophotonic structures. © 2016 Optical Society of America
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1. INTRODUCTION

Many important properties of photonic structures such as
cavities [1] and waveguides [2,3] depend on the radiative losses
that stem from coupling of energy into freely propagating op-
tical modes that escape the system. The quality, or Q, factor of
photonic resonators as well as the spontaneous emission (SE) β
factor in waveguides are important figures of merit in the analy-
sis of nanolasers [4] and single-photon sources [5], for example,
and these quantities depend sensitively on the radiative losses.
In modeling such open photonic systems, the choice of boun-
dary conditions (BCs) at the computational domain edges be-
comes crucial and may impact the results not just quantitatively
but also qualitatively. Integral equation Green’s function formu-
lations inherently adopt this openness [6], while for numerical
techniques relying on finite-sized computational domains like
the finite-difference time-domain method [7] and the finite
element method [8], this is achieved using artificial absorbing
boundaries, typically in the form of so-called perfectly matched
layers (PMLs) [9].

In Fourier-based modal-expansion techniques [10,11],
PMLs can be implemented using complex coordinate trans-
forms [12]. The absorbing boundaries are implemented by
mapping the real spatial coordinates into complex ones, which
is straightforward to implement. However, it is unclear which
complex coordinate transform to implement and why, and
there have been no systematic studies on the influence of
PML parameters and the size of the computational domain
on computed quantities of interest. In addition to Fourier

resolution convergence checks, the size of the computational
domain should be varied to estimate the computational
accuracy, but this is rarely done [13–15]. In our experience,
different choices of PML parameters and domain sizes lead
to results that agree qualitatively, but may vary substantially
—for example, errors of Q factors ∼20% [13] and errors of
dipole coupling to radiation modes ∼15–25% [16] have been
reported.

Instead of searching an extremely large PML parameter
space without intuitive or clear guidelines, we propose a differ-
ent technique that relies on finite-sized structures and open
BCs, with fields expanded via Fourier integrals instead of
Fourier series. The use of Fourier integrals, in principle, gives
an exact description but, for numerical implementation, a
k-space discretization is required that we, however, have the
freedom to choose. Similar ideas have previously been reported
for two-dimensional (2D) [17] and rotationally symmetric
three-dimensional (3D) [18–20] structures, but without dis-
cussion of the important problem of choosing the k-space
discretization. Furthermore, the important example of dipole
emission, which depends sensitively on the proper implemen-
tation of the open BCs, was not treated in these works. In this
paper, we address both these central issues. Our examples in-
clude calculations of light emission from emitters placed in ro-
tationally symmetric waveguides [21] and reflection of the
fundamental mode from a waveguide–metal interface [22].
We term this new approach an open-geometry Fourier modal
method (oFMM).
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This paper is organized as follows. Section 2 outlines the
theory of the oFMM approach, while the details are given in
Appendix A. The details of the new discretization scheme are dis-
cussed in Section 3. The method is tested for several structures by
calculating dipole emission rates, β factors, and modal reflection
coefficients in Section 4. Finally, Section 5 concludes the work.

2. THEORY

In this section, we outline the derivation of the open BC for-
malism and introduce the theoretical concepts required to
understand the results of the following sections. The detailed
derivations of the open BC formalisms in rotationally symmet-
ric geometry are given in Appendix A.

A. Open Boundary Condition Formalism

We employ the open BC formalism to describe the electromag-
netic field propagation in rotationally symmetric structures.
Complete vectorial description is used in connection with
Fourier expansion to describe the Maxwell’s equations in a
z-invariant material section. Using cylindrical coordinates in
the rotationally symmetric case allows for simplification of
the problem to 1D expansion in the radial coordinate. The
z dependence is treated by combining z-invariant sections
using the scattering matrix formalism (see, e.g., [23] and
[24] for details). Our task is then to determine the lateral elec-
tric and magnetic field components of the eigenmodes, which
are subsequently used as an expansion basis for the optical field.
In the conventional FMM, this is done by expanding the field
components as well as the permittivity ϵ�r⊥� and η�r⊥� ≡
1∕ϵ�r⊥� in Fourier series in the lateral coordinates r⊥ on a fi-
nite-sized computational domain, implying that these functions
vary periodically in these coordinates. In the open boundary for-
malism, we instead consider an infinite-sized computational do-
main and employ expansions in Fourier integrals. Essentially,
any expansion basis can be used, e.g., the plane wave basis in
the general 3D case. However, in rotationally symmetric struc-
tures, we use the Bessel J function basis since it leads to reduced
dimensionality of the problem [18]. In the following, we de-
scribe the general steps and equations required to expand the
field components and to solve for the expansion and propaga-
tion coefficients. The specific equations and derivations are
given in Appendix A and referenced throughout this section.

Starting from the time-harmonic Maxwell’s equations ∇ ×
E�r� � iωμ0H�r� and ∇ ×H�r� � −iωϵ�r�E�r� [written us-
ing cylindrical coordinates in Eqs. (A1)–(A6) in Appendix A],
where ϵ is the permittivity of the medium, μ0 is the vacuum
permeability, ω is the angular frequency, and E and H are the
electric and magnetic fields, we obtain

∇ × �∇ × E�r�� � ω2μ0ϵ�r�E�r�; (1)

which is given in cylindrical coordinates in Eqs. (A7)–(A9).
The fields in the single z-invariant section can be expanded
using the eigenmodes of the system as

E�r⊥; z� �
X
j

ajEj�r⊥� exp��iβjz�

�
Z

a�k�E�k; r⊥� exp��iβ�k�z�dk; (2)

where βj and β�k� denote the propagation constants that in
general admit no closed-form expression and are thus deter-
mined numerically, and aj and a�k� denote the weights of
the corresponding modes. Furthermore, the summation index
j denotes all the guided modes, while the integral accounts for
the radiation and evanescent modes. In numerical simulations,
the continuous integral is approximated by a sum asZ

a�k�E�k; r⊥� exp��iβ�k�z�dk

≈
X
l

alEj�kl ; r⊥� exp��iβl z�Δkl ; (3)

where Δkl � kl − kl−1 and kl �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�nk0�2 − β2l

q
, with k0 denot-

ing the wavenumber in vacuum and n being the refractive index
of the material. Similar equations hold for the magnetic field.

Using the discretized eigenfunction expansion in Eqs. (2)
and (3), the fields in each z-invariant section can be expressed
with column vectors a consisting of electric and magnetic field
expansion coefficients, �aj; alΔkl �T, all denoted with the single
index j in the following. Thus, taking the z derivative of
Eq. (2), we can formulate an eigenvalue problem describing
the fields in the system as

Ma � iβa; (4)

where the elements of matrixM are obtained by expanding the
eigenfunction on a Fourier–Bessel basis in rotationally symmet-
ric geometry as discussed subsequently.

Since the eigenfunctions are specific to each layer, we choose
a general basis and expand the eigenfunctions in each layer
using the common basis. Thus, any function (the field compo-
nents and the relative permittivity) can be expanded as a
Fourier transform

f �r⊥� �
Z
k⊥
cf �k⊥�g�k⊥; r⊥�dk⊥; (5)

where k⊥ is the transverse wavenumber while cf �k⊥� and
g�k⊥; r⊥� are the expansion coefficients and the basis functions,
respectively. In the rotationally symmetric case, k⊥ � kr , r⊥ � r,
and the basis functions g�kr ; r� are the Bessel J-functions [cf.
Eqs. (A15) and (A16)]. While in the analytical definition of
the Fourier transform the expansion basis in Eq. (5) is infinite,
for the numerical calculations the basis must be truncated asZ

k⊥
cf �k⊥�g�k⊥; r⊥�dk⊥ ≃

XM
m�1

cf �k⊥;m�g�k⊥;m; r⊥�Δk⊥;m;

(6)

where the discretization steps Δk⊥;m will be a function of the in-
dex m in the generalized approach, as will be discussed in
Section 3. This is in contrast to previous approaches [17,18],
and we show later that such a nonuniform discretization is a sig-
nificant improvement. The expansions in the cylindrical coordi-
nate system are given by Eqs. (A15)–(A16). Furthermore, the
elements of M are given in Eqs. (A23)–(A26). Solving for the
eigenvectors and eigenvalues of matrix M yields the expansion
coefficients and propagation constants in the z-invariant struc-
tures, while the fields in the full structure are then obtained
by combining the z-invariant sections using the scattering matrix
formalism.
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B. Dipole Emission

The field emitted by a point dipole placed at rpd inside a
z-invariant structure can be represented as

E�r� �
X
j
aj�rpd; p�Ej�r�

�
X
j

X
m

ajcj;mgm�r�Δk⊥;me�iβj�z−zpd�; (7)

where Ej�r� is the electric field of jth eigenmode and aj�rpd; p�
is the dipole coupling coefficient to mode j, which can be
calculated using the Lorentz reciprocity theorem [24]. The cou-
pling coefficient depends on the dipole position rpd and dipole
moment p through a dot-product p · Ej�rpd�. For the sake of
notational clarity, we omit these dependencies in the following.
Furthermore, cj;m are the expansion coefficients for mode j, and
gm�r⊥� are the basis functions.

The emitted field [Eq. (7)] consists of three contributions
[25]: guided modes, radiation modes, and evanescent modes.
In a waveguide surrounded by air, the modes are guided if the
propagation constant βj obeys k20 < β2j ≤ �nwk0�2, where nw is
the refractive index of the waveguide. In contrast, the modes are
radiating if 0 < β2j ≤ k20 and evanescent if β2j < 0. We will ap-
ply this classification in Section 3 when we investigate
discretization schemes.

The normalized power emitted by dipole to a selected mode
can be expressed as [24,26]

Pj

PBulk

� ImfajEj�rpd�g
PBulk

� ImfPmajcj;mgm�rpd�Δk⊥;mg
PBulk

; (8)

where PBulk is the emitted power in a bulk medium. The nor-
malized emitted power is equal to the normalized emission rate
[26] γj∕γBulk � Pj∕PBulk, where γj and γBulk are the emission
rates to mode j and in a bulk medium, respectively. In the
following, we will use only the normalized unitless quantity
Γj � γj∕γBulk for the emission rate. Thus, the spontaneous
emission factor (i.e., the β factor), defined as the ratio of emis-
sion to the fundamental mode (FM) and the total emission
[21], is obtained as

β � aFMEFM�rpd�P
j
ajEj�rpd�

�
aFM

P
m
cFM;mgm�rpd�Δk⊥;mP

j

P
m
ajcj;mgm�rpd�Δk⊥;m

: (9)

3. DISCRETIZATION SCHEME

In addition to the open BCs described in the previous section,
an advantage of the presented method is that it enables the
use of a nonuniform k-space discretization, which allows for
a high cut-off value together with dense-sampling k-space re-
gions while still maintaining a moderate total number of
modes, i.e., achieving the required accuracy with less computa-
tional power. In this section, we investigate how to select
the cut-off value kcut-off and how to sample the k space
effectively. The numerical tests in Section 4 show that faster
convergence is achieved using an appropriate mode-sampling
scheme.

The transverse wavenumber values in the conventional
modal expansion approach [10] are selected equidistantly:

km � mΔk � m
M � 1

kcut-off ; (10)

wherem � 1;…; M and the discretization step size depends on
the selected cut-off value kcut-off and number of modes M
as Δk � kcut-off∕�M � 1�.

In a bulk medium, light emission occurs with equal weights
in all directions. Therefore, a natural starting point for the
discretization scheme is to sample the wavevectors in the
�β; k⊥� plane with equidistant angles [27], as shown in
Fig. 1. This is also known as the Chebyshev grid [28].
Then the different transverse wavenumber values are given
by km � nk0 sin�θm�, where the equidistantly sampled angles
0 < θm < π∕2 are measured from the β axis. Although the val-
ues of θm are selected uniformly, the values of km are more
densely sampled in the proximity of nk0, cf. Fig. 1. If, instead
of a bulk medium, we consider a structure like a nanowire con-
sisting of several materials, it is necessary also to account for the
modes beyond nk0.

To obtain insight into the discretization in different types of
structures, we first investigate emission from a radially oriented
point dipole placed on the axis of rotationally symmetric infin-
ite semiconductor nanowires having radius from subwave-
length to several wavelengths and a refractive index nw (see
Fig 2). The radial component of the emitted electric field
Er�r� �

P
jajEr;j�r� �

P
jaj
P

mcmgr;m�r�Δkm can be written
by rearranging the terms as follows [cf. Section 2.B, Eqs. (6)
and (7), and Appendix A]:

Er�r� � i
X
m

" X
j�g:m:

ajEj;m�r� �
X
j�r:m:

ajEj;m�r�
#
kmΔkm; (11)

where a shorthand notation Ej;m�r� � bEn;m;jJn�1�kmr� −
cEn;m;jJn−1�kmr� has been used for the radial component of
the electric field defined in Eq. (A15). The sum over j describes
the modes of the structure, while index m accounts for the ex-
pansion of the modes using the selected basis functions. The
first summation inside the brackets in Eq. (11) describes the
guided-mode (k20 < β2j ≤ �nwk0�2) contribution, while the sec-
ond summation describes the radiation mode (0 < β2j ≤ k20)
contribution to the total emission with radial wavenumber
km. Figure 2 shows the guided and radiation mode contributions

Fig. 1. Nonuniform discretization scheme: in a bulk medium, all
propagation directions have equal weights. Therefore, the wavevector
k is sampled in the �β;k⊥� plane using equidistant angles, as shown by
θ in the figure. Due to the uniform angle distribution, the k⊥ discre-
tization is more dense close to nk0.
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and their sum as functions of radial wavenumber. The emitted
electric field has a peak around km � k0. When the radius in-
creases, a peak around km � nwk0 also gradually builds up,
while in the bulk limit (r∕λ ≫ 1), the peak around k0 disap-
pears. These results indicate that (i) for wires with radius r ≲ λ,
the k space should be densely sampled around k0; (ii) for wider
structures, dense sampling around nwk0 is also required; while
(iii) in bulk media, dense sampling is required only around
nwk0. Thus, since we are mainly interested in the region where
the wire radius is of the order of or smaller than the wavelength,
we will use the following discretization scheme that is dense
and symmetric around k0 and where the discretization step-
size gradually increases toward the cut-off value. Let
M 1; M 2; M 3 be the fixed number of k values on the intervals
�0; k0�, �k0; 2k0�, and �2k0; kcut-off �, respectively. Then we can
write

k�1�m � k0 sin�θm�; θm�
π

2

m
M 1�1

; m�1;…;M 1;

k�2�m � k0�2− sin�θm��; θm�
π

2

�
1� m

M 2�1

�
; m�1;…;M 2;

k�3�m � k�2�n2 �δ1m�δ2
2
m�m�1�; m�1;…;M 3; (12)

where we use a symmetric dense sampling around k0 by setting
M 2 � M 1. Furthermore, δ1 � Δk�2�M 2

is the biggest step size
in the symmetric region and δ2 � 2�kcut-off − k�2�M 2

−
M 3δ1�∕�M 3�M 3 � 1��. When modeling bulk materials, k0 will
be multiplied with the refractive index as concluded above. In
the following, we will use M 1 � M 2 � M 3 � M∕3. The op-
timal values of Mi may vary depending on the geometry, but
this choice limits the number of free parameters to the total
number of modes M and to the cut-off value kcut-off . Our ex-
amples will show that this selection leads to faster convergence

of the calculations than when using the equidistant discretiza-
tion scheme. An example of a nonuniform discretization and a
comparison to equidistant discretization are shown in Fig. 3.

In the next section, we use these discretization schemes in
the modeling of various structures and compare the conver-
gence and required computational power with those obtained
using a conventional discretization scheme. When comparing
the different discretization schemes, we use the same cut-off
value and the same number of modes for both of the schemes.

4. RESULTS AND DISCUSSION

Next, after introducing the principles of the open BC formal-
ism together with the new discretization strategy, we are ready
to test the method with several numerical examples. The pur-
pose of these selected examples is to show that the calculations
using oFMM formalism converge toward a well-defined open-
geometry limit and that faster convergence can be achieved us-
ing the discretization schemes introduced in Section 3 com-
pared to using the conventional equidistant discretization.
We start with calculating the dipole emission rates (or emission
power) in a bulk medium and close to an interface, since these
results can be verified analytically. After these basic checks, we
investigate the performance of our method for the cases of light
emission from emitters in waveguides as well as the case of re-
flection at a waveguide–metal interface, all of which depend
critically on a correct and accurate description of the open
boundaries.

A. Dipole Emission in Bulk and Close to an Interface

As a first example, we consider dipole emission in a bulk
medium and close to a bulk–bulk interface. Both of these ex-
amples can also be solved analytically [26,29], allowing easy
comparison of the convergence of the results. Figure 4(a) shows
the dipole emission power in a bulk material (nb � 1) calcu-
lated using the rotationally symmetric model and normalized
with the analytical result. Numerical results are calculated using
both the equidistant discretization and the nonuniform discre-
tization presented in Section 3. The obtained results show that
applying the nonuniform discretization leads to much faster
convergence of the emission rates.

In the bulk medium case, only propagating modes contrib-
ute to the light emission, and the emission rate converges

Fig. 2. Fourier components of a point dipole emission defined in
Eq. (11). The figures show the calculated radiation and guided mode
contributions and the total emission as function of the radial wave
number in z-invariant nanowires of varying radii. The nanowire
has a refractive index of nw � 3.5 and the wavelength is
λ � 950 nm. An equidistant k discretization with 1500 points and
kmax � 10k0 was used.

Fig. 3. Example of discretization step sizes Δkm for a nonuniform
discretization with M 1 � M 2 � M 3 � 10 and kcut-off∕k0 � 4. For
comparison, the equidistant discretization is also shown with the cor-
responding number of modes and cut-off values.
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provided that enough propagating modes are included in the
calculation. In contrast, in the case of a dipole emitter in close
proximity to an interface, the evanescent modes also contribute
through evanescent mode scattering at the interface and re-
excitation of the propagating modes. As a next example, we
therefore investigate the interface case.

Figure 4(b) shows the power emitted by a dipole close to an
air–glass interface while Fig. 4(c) shows the power emitted by a
dipole close to an air–metal interface. The values of the metal
and glass permittivities are ϵ � −41� 2.5i and ϵ � 2.25, re-
spectively. In contrast to the bulk medium case in Fig. 4(a)
where the cut-off was nbk0 (nb � 1), we now need to include
the evanescent modes. Figures 4(b) and 4(c) show the separate
contributions from propagating and evanescent modes to the
emission rate. Again, the nonuniform discretization leads to
faster convergence, especially for the contribution from the
evanescent modes.

B. Dipole Emitter in a Rotationally Symmetric
Waveguide

Next, we investigate the emission in waveguides by calculating
the emission rates to selected modes and the spontaneous

emission factor β. In contrast to the bulk medium and interface
cases investigated in the previous section, we face an additional
computational challenge, which is to compute the radiation
modes accurately. The waveguides considered in nanophoton-
ics usually support only a few guided modes. However, the total
emission rate and thus the β factor depend on emission to a
continuum of radiation modes that can radiate light out of
the waveguide. Calculating the radiation modes accurately re-
quires more extensive calculations than the emission on bulk
medium, as will be seen in the following examples.

Similar to the calculations represented in [21], we consider a
dipole emitter oriented along the wire axis in an infinitely
long nanowire with nw � 3.45, surrounded by air. Figure 5(a)
presents the β factor and the emission rates to the fundamental
guided mode (HE11), the second guided mode (EH11), and
the radiation modes, all normalized to the bulk medium
emission rate (see Section 2.B) as functions of the nanowire
diameter. While the rates calculated using both the equidistant
and nonuniform discretization schemes with 1200 modes and a
cut-off value 25k0 agree well qualitatively, discrepancies are ob-
served in the emission rate to radiation modes. Figure 5(b)
shows a convergence investigation of the emission rate to radi-
ation modes. We fix the nanowire geometry by setting the
diameter as 0.3λ, use both discretization schemes, and vary
the cut-off value of the transverse wavenumber as well as
the number of modes. The results show that only a slight
improvement is achieved by increasing the cut-off from
20k0 to 25k0, while the results depend on the number of modes
for small mode numbers and converge around 500. At high
mode numbers and cut-off values, the results converge to
the same value.

Fig. 4. (a) Calculated emission power Pnum in a bulk medium
(nb � 1) normalized with analytical result Pana with a fixed wave-
length λ � 950 nm. Both numerical schemes have the wavenumber
cut-off value nbk0 in the bulk medium, and the horizontal axis shows
the number of modes included in the calculations. (b) Normalized
dipole emission power in air in front of a glass (ϵ � 2.25) half-space.
The dipole is parallel to the interface. (c) Normalized power emitted by
point dipole placed in air close to an air–metal interface
(ϵ � −41� 2.5i). The dipole is perpendicular to the interface.
Numerical results in (b) and (c) are calculated using a cut-off value
of 2k0 and 200 modes. The powers are normalized with the bulk
medium value and the distance z0 from the interface with the wave-
length λ � 950 nm.

HE11

rad

EH11

(a)

diameter/
0.1 0.2 0.3 0.4
0

0.5

1

Number of modes
500 1000 1500

0.1

0.2

0.3 (b) 15
20
25

d non-unif
equid

non-unif
equid

Fig. 5. Emission from a point dipole placed on the axis of an in-
finitely long rotationally symmetric nanowire of diameter d. (a) β fac-
tor and normalized emission rates to the first and second guided modes
HE11, EH11 and radiation modes as functions of d . The nanowire
refractive index is n � 3.45 and the wavelength is λ � 950 nm. In
both discretization schemes, 1200 modes and cut-off value of 25k0
were used. (b) The emission rate to radiation modes calculated with
a fixed nanowire diameter 0.3λ. The horizontal axis shows the number
of discretization modes, and the legend shows the cut-off value of the
wavenumber in units of k0.
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C. Reflection From Semiconductor Nanowire–Metal
Interface

Finally, we investigate convergence of the method in a structure
consisting of a nanowire standing on top of a metallic bulk
layer. We calculate the reflection coefficient of the fundamental
mode from a nanowire–metal interface similar to the setup
investigated in [22]. The refractive indices of the nanowire
and metal are nw � 3.5 and nAg �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−41� 2.5i

p
at the wave-

length λ � 950 nm.
Figure 6 shows the calculated reflection coefficient as a func-

tion of the nanowire diameter using both (a) the equidistant
sampling of the k⊥ discretization and (b) the nonuniform
k⊥ discretization with several different numbers of discretiza-
tion modes. In the nonuniform discretization, the k-space
values are sampled more densely close to k0 as discussed in
Section 3. With small wire diameter, the reflection coefficients
are essentially determined by the air–metal reflection
(RAir-Ag ≈ 0.98) since in this limit the fundamental mode is
mainly located in air. In contrast, in the limit of large nano-
wires, the fundamental mode is primarily located in the

GaAs wire (RGaAs-Ag ≈ 0.95). Nevertheless, the figures show
that faster convergence is obtained using the nonuniform
discretization scheme instead of the equidistant k discretization
scheme.

The reflection coefficients in Figs. 6(a) and 6(b) are ob-
tained for a fixed cut-off value. Next, we fix the geometry
and study the effect of the cut-off value of km. We select a wire
having diameter of 0.22λ since the reflection coefficients shown
in Figs. 6(a) and 6(b), calculated with different discretization
schemes and with varying number of modes, have large varia-
tions around this diameter. Reflection coefficients as functions
of the cut-off value calculated using both discretization
schemes, with several different numbers of included modes,
are shown in Fig. 6(c). The km values are chosen such that,
when the cut-off is increased, extra points are added to the
original km grid. The results show that the calculations converge
around 5nwk0.

The convergence checks in the selected waveguide examples
represented in Figs. 5 and 6 show convergence for the inves-
tigated waveguide sizes and structures. Although these exam-
ples do not guarantee the convergence of our method in all
waveguide sizes and geometries, we expect our method to con-
verge in various types and sizes of waveguides provided that
geometry-specific modifications to the discretization scheme
are implemented.

5. CONCLUSIONS

We have demonstrated an open-geometry Fourier modal
method formalism relying on open boundary conditions and
nonuniform k-space sampling. Due to the inherent open boun-
dary conditions, we avoid the artificial absorbing boundary
conditions that in some cases lead to numerical artifacts. We
have tested the approach by investigating the dipole emission
in a bulk medium, close to an interface, and in waveguide struc-
tures, and by calculating the reflection coefficient of the fun-
damental waveguide mode for a nanowire–metal interface. Our
simulations show that the calculations based on the open-
geometry Fourier modal method formalism indeed converge
toward an open geometry limit when varying the cut-off
and the number of modes, and that the use of the nonuniform
discretization scheme leads to a faster convergence of the sim-
ulations compared to using the conventional equidistant discre-
tization. We expect that our new method will prove useful in
the accurate modeling of a variety of nanophotonic structures,
for which the open boundaries are inherently difficult to
describe. Also, extension of the formalism to the three-
dimensional Fourier modal method is straightforward and
could be used for accurate modeling of, for example, light
emission in photonic crystal membrane waveguides [2,3].

APPENDIX A: FOURIER–BESSEL EXPANSION IN
CYLINDRICAL COORDINATES

The derivation of the open BC method in a rotationally sym-
metric case is outlined following the approach presented in
[18]. We use cylindrical coordinates �r;ϕ; z�. Since the
considered structures are rotationally symmetric, the angular
dependence is expanded using Fourier series E�r;ϕ; z� �P∞

n�−∞ En�r; z� exp�inϕ�. The contributions En�r; z� for

Fig. 6. Reflection coefficient of the fundamental mode calculated
using (a) an equidistant grid and (b) a nonuniform grid with varying
number of modes (shown in the legend) and kcut-off � 20k0 as a func-
tion of the nanowire diameter. The wire and the metal have refractive
indices of nw � 3.5 and nAg �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
41� 2.5i

p
, respectively, at wave-

length λ � 950 nm. (c) The reflection coefficient of the fundamental
mode using equidistant (dotted lines) and nonuniform (dashed lines)
discretization and varying the cut-off of km for a nanowire having
diameter of 0.22λ. The values of km are chosen such that km is equi-
distantly/nonuniformly sampled up to value 2nwk0 (nw � 3.5), with
M shown in the legend. Then extra km values are added according to
the scheme when the cut-off value is increased.
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different orders n are decoupled, and it is thus possible to solve
for each order individually. This advantage is exploited to re-
duce the 2D lateral eigenvalue problem to an effective 1D
problem.

Using the Fourier expansion, the time-harmonic Maxwell’s
equations ∇ × E�r� � iωμ0H�r� and ∇ ×H�r� � −iωϵ�r�
E�r� can be written component-wise as

∂
∂z

Eϕ;n �
in
r
Ez;n − iωμ0Hr;n; (A1)

∂
∂z

Er;n �
∂
∂r

Ez;n � iωμ0Hϕ;n; (A2)

iωμ0Hz;n �
∂Eϕ;n

∂r
� Eϕ;n

r
−
in
r
Er;n; (A3)

∂Hϕ;n

∂z
� in

r
Hz;n � iωϵ�r�Er;n; (A4)

∂Hr;n

∂z
� ∂Hz;n

∂r
− iωϵ�r�Eϕ;n; (A5)

− iωϵ�r�Ez;n �
∂Hϕ;n

∂r
�Hϕ;n

r
−
in
r
Hr;n: (A6)

The Helmholtz equation for each Fourier component is
given as ΔEn�r;z�exp�inϕ��ω2μ0ϵ�r�En�r;z�exp�inϕ�� 0,
which, in component-wise form, reads as

ΔEr;n −
Er;n

r2
−
2in
r2

Eϕ;n � ω2μ0ϵ�r�Er;n � 0; (A7)

ΔEϕ;n −
Eϕ;n

r2
� 2in

r2
Er;n � ω2μ0ϵ�r�Eϕ;n � 0; (A8)

ΔEz � ω2μ0ϵ�r�Ez;n � 0: (A9)

Equations (A7) and (A8) are of the form of Bessel differen-
tial equations and couple the radial and angular components of
the electric field. In order to simplify calculations, these
equations are decoupled using the notation

E�
n � Eϕ;n � iEr;n: (A10)

The transverse components of the Helmholtz equation can
then be written as

ΔE�
n −

E�
n

r2
� 2n

r2
E�
n � ω2μ0ϵ�r�E�

n � 0; (A11)

ΔE−
n −

E−
n

r2
−
2n
r2

E−
n � ω2μ0ϵ�r�E−

n � 0: (A12)

These Bessel-differential equations have general solutions

E�
n � Eϕ;n � iEr;n �

Z
∞

kr�0

2cEn �kr ; z�Jn−1�krr�krdkr ;

(A13)

E−
n � Eϕ;n − iEr;n �

Z
∞

kr�0

2bEn �kr ; z�Jn�1�krr�krdkr ;

(A14)

where Jn is the Bessel function of the first kind having order
of n. For numerical calculations, these Bessel integrals are

truncated as
R
∞
kr�0 krdkr →

P
M
m�1 kmΔkm and the Fourier

series are truncated to −N ≤ n ≤ N . The expansions are

Er�r;ϕ; z� � i
XN
n�−N

XM
m�1

kmΔkm�bEn;m�z�Jn�1�kmr�

− cEn;m�z�Jn−1�kmr�� exp�inϕ�; (A15)

Eϕ�r;ϕ; z� �
XN
n�−N

XM
m�1

kmΔkm�bEn;m�z�Jn�1�kmr�

� cEn;m�z�Jn−1�kmr�� exp�inϕ�: (A16)

Equivalent equations are obtained for magnetic fields by
substituting cEn → cHn and bEn → bHn . The z components are ob-
tained using the time-harmonic Maxwell’s equations (A3) and
(A6), the above expansions, and the derivation rules for Bessel
functions as

iωμ0Hz;n �
XM
m�1

k2mΔkm�bEn;m − cEn;m�Jn�kmr�; (A17)

−iωϵ�r�Ez;n �
XM
m�1

k2mΔkm�bHn;m − cHn;m�Jn�kmr�: (A18)

To obtain expression for Ez;n�r�, we expand Eq. (A18) using
Ez;n �

P
M
m�1 kmΔkmEz;n;mJn�kmr�, integrate both sides of

Eq. (A18) with
R∞
r�0 ·rJn�km 0 r�dr, and use the orthogonality

of the Bessel functions. We then obtain the expression for
Ez;n;m, which is substituted to the expansion of Ez;n, giving

Ez;n �
i

ω

XM
m;m 0�1

��ϵ�n;n�−1m;m 0km 0 �bHn;m 0 − cHn;m 0 �Jn�kmr�; (A19)

where we have used the shorthand notation
�ϵ�n;nm;m 0 �

R
∞
r�0 ϵ�r�Jn�kmr�Jn�km 0r�rdr.

The expansion coefficients b and c are obtained representing
the system as an eigenvalue problem by applying the differential
method as follows. The z dependence of the Maxwell’s
equations’ expansion coefficients are written as an eigenvalue
problem:

dfn�z�
dz

� Mnfn�z�; n ∈ �−N;N �; (A20)

where f ∈ C4M×1 and M ∈ C4M×4M are

fn�z� �

2664
bEn;m�z�
cEn;m�z�
bHn;m�z�
cHn;m�z�

3775 Mn �
�
Mn;11 Mn;12
Mn;21 Mn;22

�
: (A21)

Here the z dependence is of the form exp�iβz�. The deriv-
atives of the electric field expansion coefficients couple only to
the magnetic field components and vice versa, so that the
propagation constants β and expansion coefficients can be
solved from the eigenvalue problem

−β2n

�
bEn;m
cEn;m

�
� Mn;12Mn;21

�
bEn;m
cEn;m

�
: (A22)

The magnetic field expansion coefficients are obtained from
the electric field ones using matrix Mn;21. Equivalently, the
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eigenvalue problem can be written for magnetic field
coefficients.

Derivating definitions in Eq. (A10) with respect to z, sub-
stituting Maxwell’s Eqs. (A1)–(A6), and using the orthogonal-
ity of Bessel functions allows us to write

debEn;m
dz

� −ωμ0ebHn;m −
km
2ω

X
m 0

��ϵ�n;enm;m 0 �−1km 0 �ebHn;m 0 −ecHn;m 0 �;

(A23)

decEn;m
dz

� −ωμ0ecHn;m −
km
2ω

X
m 0

��ϵ�n;enm;m 0 �−1km 0 �ebHn;m 0 −ecHn;m 0 �;

(A24)
for the electric field coefficients and

debHn;m
dz

� k2m
2ωμ0

�ebEn;m −ecEn;m�
� i

1

2
ωkm

Z
∞

r�0

ϵ�r�Er;n�r�Jn�1�kmr�rdr

−
1

2
ωkm

Z
∞

r�0

ϵ�r�Eϕ;n�r�Jn�1�kmr�rdr; (A25)

decHn;m
dz

� k2m
2ωμ0

�ebEn;m −ecEn;m�
� i

1

2
ωkm

Z
∞

r�0

ϵ�r�Er;n�r�Jn−1�kmr�rdr

� 1

2
ωkm

Z
∞

r�0

ϵ�r�Eϕ;n�r�Jn−1�kmr�rdr; (A26)

for the magnetic the field coefficients, where ebEn;m � kmbEn;m
and so on. The integrals in Eqs. (A25) and (A26) involving
Eϕ;n�r� can be calculated using the direct rule [30,31] asZ

∞

0

ϵ�r�Eϕ;n�r�Jn�1�kmr�rdr

�
XM
m 0�1

km 0Δkm 0 ��ϵ�n�1;n�1
m;m 0 bEn;m 0 � �ϵ�n�1;n−1

m;m 0 cEn;m 0 �; (A27)

while the integrals involving Er;n�r� are calculated using the
inverse rule due to the discontinuities of ϵ�r� and Er;n�r� as
follows: The electric field can be expanded using the electric
displacement as Er;n�r� �

P
mkmΔkm 1

ϵ�r�D
�
r;n;mJn�1�kmr�,

which has expansion components given by E�
r;n;m �R

∞
0 Er;n�r�Jn�1�kmr�rdr so that

E�
r;n;m 0 �

Z
∞

0

Er;n�r�Jn�1�kmr�rdr

�
X
m

kmΔkmD�
r;n;m

�
1

ϵ

�
n�1;n�1

m 0 ;m
: (A28)

The expansion for electric displacement is obtained by
inverting as

D�
r;n;m �

X
m 0

1

kmΔkm

��
1

ϵ

�
n�1;n�1

�
−1

m;m 0
E�
r;n;m 0 : (A29)

Solving E�
r;n;m 0 using Eq. (A15) and substituting into

Eq. (A29) leads to

ikmD�
r;n;m � −

XM
m 0�1

1

km 0Δkm

��
1

ϵ

�
n�1;n�1

�
−1

m;m 0
km 0bEn;m 0

�
XM

m 0 ;m 0 0�1

1

km 0Δkm

��
1

ϵ

�
n�1;n�1

�
−1

m;m 0

× km 0Δkm 0 0 �Ψ�n�1;n−1
m 0 ;m 0 0 km 0 0 cEn;m 0 0 ; (A30)

ikmD−
r;n;m � −

XM
m 0 ;m 0 0�1

1

km 0Δkm

��
1

ϵ

�
n−1;n−1

�
−1

m;m 0

× km 0Δkm 0 0 �Ψ�n−1;n�1
m 0 ;m 0 0 km 0 0bEn;m 0 0

�
XM
m 0�1

1

km 0Δkm

��
1

ϵ

�
n−1;n−1

�
−1

m;m 0
km 0 cEn;m 0 0 ;

(A31)

where the following notations were used:�
1

ϵ

�
n;n

m;m 0
�

Z
∞

r�0

1

ϵ�r� Jn�kmr�Jn�km 0 r�rdr; (A32)

�Ψ�n�1;n	1
m;m 0 �

Z
∞

r�0

Jn�1�kmr�Jn	1�km 0r�rdr: (A33)
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