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On the Theory of Coupled Modes in Optical
Cavity-Waveguide Structures

Philip Trøst Kristensen, Jakob Rosenkrantz de Lasson, Mikkel Heuck, Niels Gregersen, and Jesper Mørk

Abstract—Light propagation in systems of optical cavities cou-
pled to waveguides can be conveniently described by a general rate
equation model known as (temporal) coupled mode theory (CMT).
We present an alternative derivation of the CMT for optical cavity-
waveguide structures, which explicitly relies on the treatment of the
cavity modes as quasi-normal modes with properties that are dis-
tinctly different from those of the modes in the waveguides. The
two families of modes are coupled via the field equivalence prin-
ciple to provide a physically appealing yet surprisingly accurate
description of light propagation in the coupled systems. Practical
application of the theory is illustrated using example calculations
in one and two dimensions.

Index Terms—Coupled mode analysis, integrated optics, optical
resonators, optical waveguides.

I. INTRODUCTION

COUPLED systems of optical waveguides and micro cav-
ities provide a powerful platform for integrated optical

components with applications ranging from optical experiments
to communication networks. In experiments, the coupling to a
waveguide provides convenient input and output channels for
cavities [1], [2] in which the optical field is enhanced to increase
light-matter interaction [3], [4]. For communication purposes,
the micro cavities may act as filters to transmit or drop specific
wavelengths [5] or as sharp bends to guide the light in circuits
with microscopic footprints [6], and it has been shown that
waveguides can act to couple distant cavities [7]. The relatively
high optical energy density may lead to larger impact of non-
linear material responses, such as the Kerr effect, and carrier and
temperature induced index changes [8], [9] which lead to shifts
in the cavity resonance frequency and the cavity-waveguide cou-
pling. This may, in turn, form the basis for optical buffers [10],
[11] or integrated all-optical switching, in which control pulses
of light are used to govern the transmission of signal pulses [11],
and promises ultra fast operation without the need for energy-
consuming optical to electronic conversions. For ease in the
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interpretation of experiments and design of future integrated op-
tical components, it is naturally of considerable interest to have
both accurate and efficient theoretical models of light propaga-
tion in such coupled optical cavity-waveguide systems.

In general, an exhaustive description of the coupled cavity-
waveguide dynamics requires the solution of a highly compli-
cated set of partial differential equations in time and space for
the electromagnetic field as well as possible auxiliary equations
for carrier transport, heat diffusion or other important processes.
The dynamical equations governing each of the processes are
well known, and such an approach is therefore in principle pos-
sible by numerical means. In practice, however, the complexity
of the numerical model makes the computational requirements

Fig. 1. Top: Example transmission calculation for a two-dimensional coupled
cavity-waveguide structure. The color coding indicates the relative strength of
the out-of-plane electric field when illuminated from the left channel at the
frequency ωa/2πc = 0.385. Center: One-dimensional example of the trans-
mission through an in-line coupled cavity, showing the real (red solid) and
imaginary (blue dashed) parts as well as the absolute value (black dashed-
dotted) of the relative electric field E(x)/E(0) when illuminated from the left
at the cavity resonance frequency. Bottom: General schematic for use in setting
up the CMT model for an in-line coupled cavity.
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prohibitively large and limits the accuracy and the parameter
ranges to be studied as well as physical insight to be gained. As
an alternative approach to describe the fundamental dynamics
in an effective and physically transparent way, coupled cavity-
waveguide systems are often modeled by use of a rate equa-
tion model known as (temporal) coupled mode theory (CMT)
[12]–[15]. CMT aims to set up systems of ordinary differential
equations to model light propagation in optical micro struc-
tures and circuits consisting of waveguides and cavities. This
obviously represents an enormous simplification compared to
the full set of Maxwell’s equations. Nevertheless, the approach
works remarkably well and provides an intuitive and physically
appealing framework for the study and design of optical cir-
cuit elements and cavity based experiments [4], [9], [16]–[28].
Moreover, the connection to quantum field theory was pointed
out at an early stage [29] and a framework similar to that of
CMT forms the basis of several theoretical approaches to quan-
tum optics with coupled cavity-waveguide systems [30]–[33].

Fig. 1 shows examples of typical transmission type calcula-
tions for coupled cavity-waveguide structures in one and two
dimensions as well as a typical schematic representation of the
coupling between different parts of the system in the case of an
in-line configuration such as in the one-dimensional example.
The standard approach of CMT is to set up equations coupling
the temporal field amplitudes A(t) and Sn±(t). The fields are
normalized so that |A(t)|2 represents the optical energy inside
the cavity, and |Sn±(t)|2 represents the optical power in wave-
guide n that is transmitted towards (+) or away from (−) the
cavity. With these definitions, the CMT equations for the one-
dimensional example take the form [15]

d
dt

A(t) = −iωcA(t) − γcA(t) +
√

γc Sn+(t) (1)

Sn−(t) = Sn+(t) −√
γc A(t), (2)

where ωc represents the cavity resonance frequency and γc is
the decay rate of the field in the cavity. This simple one cavity
case may be readily generalized, and multimode cavities with
multiple ports are discussed in [34]. In deriving (1) and (2),
no details are given of the cavity and waveguide fields and no
formal definition is given of the boundaries of the cavity. This
reflects the enormous applicability of the equations, which were
derived using only the assumptions of energy conservation and
the existence of a resonance in a system with a driven harmonic
oscillator [14], [15]. The simplicity, however, comes at a price
when the theory is scaled to larger systems of coupled waveg-
uides and cavities, such as in the top panel of Fig. 1, because the
lack of definition of the cavity boundaries effectively means that
the phases of the coupling coefficients are unknown. Although
this is of limited concern in the single cavity case, it can be
important in the modeling of coupled cavities or devices relying
on interference based effects. Moreover, the incorporation of
additional physical effects in the model typically relies on the
electric field strength, and therefore requires additional scaling
of the field amplitudes A(t), which implicitly must depend on
the cavity boundaries because of the choice of normalization.
In addition to the practical limitations of (1) and (2), there is an
inherent and intriguing mathematical difficulty in the fact that

the CMT equations seem to couple the fields in a conservative
system (the waveguide) with those in a non-conservative system
(the cavity).

In this Article, we provide an alternative derivation of the
CMT equations which originates from properties of the two
families of modes that can be unambiguously defined for the
waveguides and the cavities, respectively. As in (1) and (2), the
end result does not rely on a definition of the cavity boundaries,
but does include definite, and in general non-trivial, phase rela-
tions between the different modes. We discuss and illustrate how
the cavity modes can be unambiguously defined as quasinormal
modes (QNMs), which are solutions to a non-Hermitian eigen-
value problem and have complex resonance frequencies [35],
[36]. The derivations of the CMT equations are based on the field
equivalence principle, by which an incoming waveguide mode
acts as a source for the QNM of the cavity. Similar ideas were
introduced for transmission calculations in a one-dimensional
system in [37], and very recently a scattering matrix approach
to the CMT was presented in [38]. The calculations result in
generalized CMT equations for the (complex) electric field am-
plitudes which are similar in complexity to the standard CMT
equations, and for the one-dimensional example system in Fig. 1
we show explicitly how the theory reduces to (1) and (2) in the
case of cavities with high Q-values.

The Article is organized as follows: In Section II we set up
the theoretical framework and derive the CMT equations. We
first define the modes of the waveguides and cavities and dis-
cuss their normalization and use in expansion of the electric
field Green tensor. We then use the field equivalence princi-
ple to formulate the coupling between the two types of modes;
this forms the basis for a derivation of the CMT equations,
in which the waveguide modes act as a driving term for the
cavity modes as in (1). Section III provides example calcu-
lations in one and two dimensions, where we assess the va-
lidity of the theory by comparing directly to high accuracy
reference calculations. Last, we present the conclusions in
Section IV.

II. THEORY

In this section we derive the CMT equations. First, we intro-
duce rigorous definitions of the modes in both the waveguides
and the cavity. Next, we calculate the coupling between the
modes in the waveguides and the cavities and derive the CMT
equations.

A. Definition of Modes

In general, we define the different modes of the subsystems
to be time-harmonic solutions to the source-free Maxwell equa-
tions of the form

f(r, t) = f(r, ω)e−iωt, (3)

where ω denotes the angular frequency, and the position depen-
dent field f(r, ω) solves the wave equation

∇×∇× f(r, ω) −
(ω

c

)2
εr(r)f(r, ω) = 0, (4)
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in which εr(r) is the position dependent relative permittivity,
and c denotes the speed of light. For simplicity, we limit the
analysis to non-dispersive materials. The wave equation alone
does not suffice to unambiguously define the modes—only by
specifying a suitable set of boundary conditions do we get a
differential equation problem with corresponding solutions that
we might define as modes. The proper choice of boundary con-
ditions depends on the specific subsystem, and we argue that
different choices are appropriate for the waveguide modes and
the cavity modes. The different families of modes lead to dif-
ferent expansions of the Green tensor associated with (4) and
defined by the equation

∇×∇× G(r, r′, ω) −
(ω

c

)2
εr(r)G(r, r′, ω) = δ(r − r′),

(5)

subject to the radiation condition that the Green tensor, when
interpreted as the field r due to a source at r′, contains only
components moving away from the source at large distances.

1) Waveguide Modes: We consider general waveguides for
which the relative permittivity can be written as εr(r + R) =
εr(r), where R is a lattice vector in the direction of the wave-
guide. The proper boundary conditions in this case are periodic
boundary conditions with an optional phase. Bloch-Floquet the-
ory ensures that the solutions to the wave equation may be writ-
ten as

fk(r) = eik·ruk(r), (6)

in which uk(r + R) = uk(r) is the Bloch function and k is
the Bloch wave vector in the direction of the waveguide. As a
special case, (6) applies also to translationally invariant waveg-
uides, such as optical fibers for example, for which uk(r) is
independent of the position along the waveguide. Using peri-
odic boundary conditions, (4) yields a Hermitian differential
equation problem for the Bloch functions uk(r) in a single
waveguide unit cell, which may be solved analytically in certain
cases or by standard numerical methods such as plane wave ex-
pansion [39] or finite elements (FEM) [40]. The full solution to
a waveguide geometry problem comprises both guided modes,
which decay exponentially in the direction perpendicular to the
waveguide, and radiation modes, which oscillate in the direction
perpendicular to the waveguide and may or may not decay in
the propagation direction [41]. For the present purpose, how-
ever, we consider only the guided modes, for which the wave
vector k is real, and we limit the analysis to waveguides that
support only a single band of guided modes with an approxi-
mate linear dispersion in the bandwidth of interest. The guided
modes are normalized as

1
a

∫

UC
εr (r)u∗

k(r) · uq(r) dV = δkq , (7)

where the integral is over the volume of a single waveguide unit
cell of length a. In general, we may expand any time-dependent
electric field, which is guided in the waveguide n, as a sum over
the guided modes as

En±(r, t) = En±
∑
ω

ζ(x, ω)e−iωtfn±(r, ω), (8)

where ± denotes the direction of propagation. The coordinate x
specifies the position along the waveguide, so that ζ(x, ω) gov-
erns the modulation of the mode functions fn±(r, ω) throughout
the waveguide; the field variation transverse to the waveguide
is entirely contained in the mode functions. For any waveguide
mode fn+(r, ω), we fix the phase of the waveguide mode travel-
ing in the opposite direction to be fn−(r, ω) = f ∗n+(r, ω). With
this phase convention, the guided mode contribution to the Green
tensor in the waveguide n may be written as [42], [43]

Gwg(r, r′, ω) ≈ i
c2

2ωvg

[
Θ(x − x′)fn+(r, ω)f ∗n+(r′, ω)

+ Θ(x′ − x)fn−(r, ω)f ∗n−(r′, ω)
]
, (9)

where vg = ∂ω/∂k is the group velocity and Θ(x) is the Heav-
iside step function.

2) Cavity Modes: Optical cavities are fundamentally differ-
ent from waveguides because they act as resonators for light at
discrete frequencies, and because they are inherently leaky [35],
[36] resulting in an exponential decay of energy in the cavity
over time. The leaky nature of the cavity modes can be conve-
niently modeled by use of a radiation condition in the defining
differential equation problem. Augmenting (4) with a radiation
condition leads to a non-Hermitian eigenvalue problem, and
the solutions are QNMs [35], [36] with discrete and complex
resonance frequencies ω̃μ = ωμ − iγμ . For any surface A with
normal vector n fully enclosing an optical cavity with a single
QNM μ, the time-averaged power leaking through the surface,
as given in terms of the Poynting vector S(r), is related to the
time-averaged energy inside the surface, as given in terms of the
energy density u(r), as [44]

∫

A

〈S(r)〉 · ndA = 2γμ

∫

V

〈u(r)〉dV, (10)

where 〈·〉 denotes the time-average. From (10), one can infer
that the Q-value is given as Q = ωμ/2γμ [44]. In geometries
with a homogeneous permittivity distribution εB = n2

B at large
distances from the cavity, the proper choice of radiation condi-
tion is arguably the Silver-Müller radiation condition [36], [45]
in the form [46]

r̂ ×∇× f̃μ(r) → −inB
ω̃μ

c
f̃μ(r) as r → ∞, (11)

where r̂ is a unit vector in the direction of r, and the limit is to be
understood in the sense that A → B if A/B → 1. For general
coupled cavity-waveguide structures, however, the coupling to
the waveguides often represents the largest decay channel for
the optical energy in the cavity, and one cannot hope to accu-
rately calculate the cavity mode without including the coupling
to the waveguide. In the case of cavities coupled to periodic
waveguides in photonic crystal (PC) membranes, for example,
one would require (11) to be satisfied at positions above and
below the membrane. For the part of the field leaking through
the waveguides, one can enforce a waveguide radiation condi-
tion by demanding that the QNMs satisfy a condition similar to
(6), but with the wave vector in each of the waveguides pointing
away from the cavity [47]–[49]. In particular, for positions in
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or near the waveguide, but sufficiently far away from the cavity
that the influence of non-propagating waveguide modes can be
neglected, the QNM can be written in terms of the analytical
continuation of the waveguide mode traveling away from the
cavity as

f̃μ(r) = σμn fn−(r, ω̃μ), (12)

where σμn is a complex constant which depends on the choice
of phase of the waveguide modes. See Appendix A for details
on the expansion of cavity modes in terms of waveguide modes.

The use of radiation conditions ensures that light propagates
away from the cavity as expected for a leaky resonator, but this
comes at the price of a conceptually challenging property of
the QNMs, namely the fact that they diverge (exponentially)
in the limit r → ∞. This exponential divergence in the spatial
domain is a natural consequence of the propagating nature of
electromagnetic fields in combination with the exponential tem-
poral decay of the field in the cavity [50], [51]. In practice, it
has the important consequence that the QNMs cannot be nor-
malized by the integral formula which is commonly adopted
for Hermitian eigenvalue problems. For resonators in homoge-
neous backgrounds, the proper normalization has been derived
in at least three different ways [52]–[54] which are closely re-
lated and provide the same result [46]. The differences in the
normalization integrals can be understood as arising from differ-
ent regularizations of an inherently ill-defined integral [46]. For
cavities coupled to periodic waveguides, this observation was
used in [49] as a motivation for regularizing the normalization
integral by means of the theory of divergent series. With such an
approach, but writing the integral in terms of the electric field
QNMs only, the QNMs may be normalized via the integral

I =
∫

V

εr(r)f̃μ(r) · f̃μ(r) dV, (13)

where the volume V extends over all space, but is split into
different parts; one part containing the cavity and one part for
each of the infinite waveguides leading away from the cav-
ity. Considering, for simplicity, a single waveguide extending
from the cavity in the positive x direction, the integral is split
as I = Ix<x0 + Ix>x0 , and calculation of Ix<x0 is performed
over a volume extending to a distance along the waveguide, x0 ,
which is chosen sufficiently large so that, for positions in the
waveguide, the QNM is well described by (6) with a single com-
plex wave vector k̃μ of magnitude k̃μ . For the region x > x0 ,
where the integrand diverges exponentially with increasing x,
one can rewrite the integral as

Ix>x0 = Ia(x0)
∞∑

m=0

bm , (14)

where b = exp{2ik̃μa} and Ia(x0) is an integral as in (13)
but limited to a single unit cell along the waveguide direction
from x = x0 to x = x0 + a. Since |b| > 1, the series in (14)
is formally divergent. Nevertheless, one can use the theory of
divergent series [55] to assign to it the finite value

Ix>x0 =
Ia(x0)

1 − e2ik̃μ a
. (15)

This regularization procedure, with which the total integral
I = Ix<x0 + Ix>x0 is independent of x0 , has been used for
QNM perturbation calculations [49] as well as QNM approx-
imations to the local density-of-states [56], [57] in coupled
cavity-waveguide systems.

In many practical applications of QNMs, and in the present
case in particular, we are not interested in a full expansion of
the field. Rather, we seek an expansion in terms of at most a
few QNMs in each cavity, which can be treated analytically
and often provide a surprisingly accurate description [36], [37],
[54], [56]–[62]. In such an approach, at frequencies close to the
cavity resonance and positions in or near the cavity, we assume
that the Green tensor may be well approximated as [62]

Gcav(r, r′, ω) ≈ c2

2ω

∑
μ

f̃μ(r)f̃μ(r′)
ω̃μ − ω

, (16)

where μ runs over the (few) QNMs of interest for the given
cavity. The denominator in (16) is slightly different from that of
another expansion of the Green tensor in terms of the QNMs,
where the denominator is replaced by 2ω̃μ(ω̃μ − ω) [63]. It was
pointed out in [53], that the two forms can be related by use of
a QNM completeness relation. For the present purpose with an
explicit truncation of the summation, we generally do not expect
one to be more precise than the other, but the form in (16) results
in slightly simpler expressions when used to derive the CMT
equations below. Finally, as in the case of the Green tensor, we
also assume that one can approximate the time dependent field
in the cavity in terms of the few QNMs of interest as

Ecav(r, t) =
∑

μ

Eμ(t)f̃μ(r). (17)

B. Derivation of the CMT Equations

Given that the waveguide modes and the cavity modes derive
from differential equation problems with very different bound-
ary conditions, it is not obvious how to calculate a coupling
between them directly from Maxwell’s equations. In particu-
lar, the cavity modes contain only outwards propagating field
components, so it is unclear how one can calculate the coupling
between the incoming light in the waveguide and the field in
the cavity by use of an overlap integral, even though this is a
well established approach for calculating the coupling between
co-propagating beams of light in parallel waveguides. Clearly,
in deriving the CMT equations from energy conservation argu-
ments [15] one elegantly avoids this challenge, but at the price
of leaving the phase of the coupling constant unspecified. It
would therefore be both useful and enlightening to have a for-
mal understanding of how to connect the two types of modes.
Below, we take an alternative approach and derive the coupling
coefficients as well as the CMT equations by way of the two
different approximations of the Green tensor in (9) and (16).

1) Coupling Waveguide Modes With Cavity Modes: We con-
sider the case of an electromagnetic field, at a single frequency
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Fig. 2. Cavity coupled to waveguides in an in-line configuration.

ω and incident in waveguide n, of the form

Ein(r, ω) = En+(ω)fn+(r, ω) (18)

Bin(r, ω) = − i
ω
∇× Ein(r, ω), (19)

where the field fn+(r, ω) has the Bloch form in (6). The field
carries the average input power

Pn+ =
1

2μ0

∫

Dn

Re {Ein(r, ω) × B∗
in(r, ω)} · ndA, (20)

where μ0 is the permeability of free space, Dn is any plane
intersecting the waveguide and n is a unit vector in the direction
of propagation. The input power equals the product of the group
velocity and the unit cell average of the energy density [15], so
by (7) and (18) and (19) we may write it as

Pn+ =
vg

2a

∫

UC
ε0εr(r, ω)|Ein(r, ω)|2 dV,

=
vg

2
ε0 |En+(ω)|2 , (21)

in which ε0 is the permittivity of free space.
By use of the field equivalence principle [64], the incident

field is identical to the field from electric and magnetic current
sources in the plane Dn of the form

Jin(r, ω) = n̂ ×
(

1
μ0

Bin(r, ω)
)

(22)

Min(r, ω) = Ein(r, ω) × n̂. (23)

Therefore, at positions r, which are further along the waveguide
than r′, we can write the electric field as [64]

E(r, ω) =
∫

Dn

iωμ0G(r, r′, ω) · Jin(r′, ω) dA

−
∫

Dn

[∇× G(r, r′, ω)
] · Min(r′, ω) dA (24)

where G(r, r′, ω) is the electric field Green tensor for the par-
ticular geometry of interest.

As an example, for the infinite waveguide we can use (24)
with the waveguide Green tensor in (9) to find that

Ewg(r, ω) =
2μ0c2Pn+

vg|E1+(ω)|2 Ein(r, ω) = Ein(r, ω), (25)

confirming that the field at any point in the infinite waveguide
is simply the input field. In the case of a waveguide coupled to
a cavity, as shown schematically in Fig. 2, we can use the QNM

expansion of the Green tensor in (16) to calculate the field in
the cavity due to a source current in the plane Dn . To this end,
we note that for positions in the waveguide, the functional form
of the cavity mode in the waveguide is similar to the analytical
continuation of the waveguide mode traveling in the direction
away from the cavity, cf. (12). To a first approximation, and at
positions in waveguide n close to the cavity, we may neglect
the change in the waveguide mode profile due to the relatively
small imaginary part of the complex resonance frequency and
set

f̃μ(r) ≈ σμn fn−(r, ωμ), (26)

which is the key relation underlying most of the calculations
below. This approximation is expected to be best at positions
close to the cavity, as discussed in Appendix B. With (26), we
can use the QNM expansion of the Green tensor in (16) and the
field equivalence principle in (24) to express the cavity field in
terms of the input field as

Ecav(r, ω) =
∑

μ

i
vg

ω − ω̃μ
σμnEn+(ω)f̃μ(r). (27)

We define the complex coupling of a general input field
Ein(r, ω) = En+(ω)fn+(r, ω) to the cavity field of a single
QNM Eμ(r, ω) = Eμ(ω)f̃μ(r) as

Cμn (ω) =
Eμ(ω)
En+(ω)

. (28)

With this definition, we can express the amplitude of the cavity
mode μ due to coupling of the input field in (18) as

Eμ(ω) = Cμn (ω)En+(ω), (29)

where

Cμn (ω) = i
vg

ω − ω̃μ
σμn = Γμ(ω)σμn . (30)

2) Transmission and Reflection From Cavities: In many
practical situations, we are interested in the transmission and
reflection from the cavity sections. In these situations, we must
find a suitable approximation to the Green tensor for use in
the field equivalence principle via (24). The most general linear
scattering of an incoming signal includes both coupling into
the cavity and scattering into an outgoing signal through the
same channel. By such arguments, additional reflected light is
automatically built into the CMT [15] as can be seen directly
from (2). In keeping with the spirit of the current attempt at
deriving the CMT directly from the properties of the modes, we
include additional scattering and transmission contributions to
the Green tensor by means of the Dyson equation, as detailed
in Appendix C. With such an approach, we can derive a general
approximation of the Green tensor in the physically appealing
form

G(r, r′, ω) ≈ GB(r, r′, ω) +
c2

2ω

∑
μ

f̃μ(r)f̃μ(r′)
ω̃μ − ω

(31)

as the sum of the Green tensor of the reference structure with no
cavity, GB(r, r′, ω), and the QNM approximation of the cavity
Green tensor.



4252 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 35, NO. 19, OCTOBER 1, 2017

For a general input field Ein(r, ω) = En+(ω)fn+(r, ω)
we define the complex transmission to the output channel
Em−(r, ω) = Em−(ω)fm−(r, ω) as

Tmn (ω) =
Em−(ω)
En+(ω)

. (32)

For the transmission through an in-line coupled single-mode
cavity, as in Fig. 2, we can neglect the contribution from the
background Green tensor GB(r, r′, ω) in (31) and express the
transmission as

Tmn (ω) = i
vg

ω − ω̃μ
σμnσμm = Γμ(ω)σμnσμm . (33)

Alternatively, we can calculate the transmission through the in-
line coupled single-mode cavity by use of the waveguide Green
tensor and considering the cavity mode as the source term for
fields in the output waveguide. This gives the same result.

As a straightforward generalization of the transmission, and
keeping in mind the phase convention for the waveguide modes,
we define the complex reflection coefficient to the output chan-
nel Eout(r, ω) = En−(ω)f ∗n+(r, ω) as

Rn (ω) = Tnn (ω) =
En−(ω)
En+(ω)

. (34)

In the case of the in-line coupled single-mode cavity, we can
write the approximate form for the Green tensor in (31) in the
form

G(r, r′, ω) ≈ i
c2

2ωvg
fn−(r)f ∗n+(r′)Φ +

c2

2ω

f̃μ(r)f̃μ(r′)
ω̃μ − ω

(35)

where Φ denotes a general phase factor which depends on the
particular geometry and the phase of the waveguide modes. In
the case of lossless reflection from perfectly conducting plates
and the choice of phase where the waveguide modes are entirely
real at the plates, the phase factor must be Φ = −1. Using (35),
we can follow calculations analogous to those for the straight
waveguide in (25) and the transmission through the single mode
cavity in (33) to express the reflection as

R(ω) = Φ + i
vg

ω − ω̃μ
σ2

μn = Φ + Γμ(ω)σ2
μn . (36)

3) CMT Equations: The CMT equations follow immedi-
ately from (27) by transformation to the time domain. For each
term in the sum, we can Fourier transform to find

Eμ(t) =
1
2π

∫ ∞

−∞
i

vg

ω − ω̃μ
σμnEn+(ω)e−iωt dω. (37)

Next, we multiply by exp{iω̃μ t} and differentiate to find

d
dt

Eμ(t) = −iω̃μEμ(t) + vgσμnEn+(t). (38)

In order to connect to the standard formulation of CMT, we
consider a single cavity with high Q-value, for which we can
express the norm of σμn in terms of physical parameters as
|σμn |2 ≈ 2γn/vg, where γn is the decay rate of the cavity mode
through waveguide n; see Appendix D for details. In this case,
for a single symmetric two-port cavity as in Fig. 2 with γn =

γμ/2, for example, we can choose the phases of the waveguide
modes so that the coupling in (30) can be written as

Cμn (ω) ≈ i
√

γμvg

ω − ω̃μ
, (39)

which is exactly the typical Lorentzian coupling that one would
expect from energy conservation arguments. For high-Q cavi-
ties, the phase of the QNMs can be chosen so that the fields are
almost entirely real. In this limit, the QNM norm in (13) reduces
to the integral over the real energy density, so that we can use
(17) to write the time-averaged energy in the cavity as

Ucav(t) ≈ 1
2
ε0 |Eμ(t)|2 , (40)

and since the QNMs are normalized, we can define

A(t) =
√

ε0

2
Eμ(t), (41)

so that |A(t)|2 = Ucav(t). Moreover, from (21) we can immedi-
ately define

Sn+(t) =
√

ε0vg

2
En+(t), (42)

so that |Sn+(t)|2 = Pn+(t). With these definitions, we can now
multiply in (38) by

√
ε0/2 to rewrite it in the exact form of

(1). Similarly, to calculate the reflected light in the limit of high
Q-values, we can set Φ = −1 in (36) and use the expression for
the coupling in (30) to write

En−(ω) = −En+(ω) + Eμ(ω)σμn . (43)

Multiplying by
√

ε0vg/2 and transforming to the time domain,
we can then define Sn−(t) = −√

ε0vg/2En−(t) to recover the
exact form of (2).

III. EXAMPLES

The CMT equations obviously provide an enormous simpli-
fication in practical calculations when compared to the full so-
lution of the time-dependent Maxwell equations. The question
remains as to the price, in terms of accuracy, one has to pay for
this simplification. In this section we quantify the error by com-
paring CMT calculations to independent numerical solutions. In
Section III-A, we start by considering a one-dimensional model
system which captures most of the essential physics and has
several advantages over higher-dimensional models: It is easy
to clearly and exhaustively specify the model, the QNMs are
particularly easy to calculate, normalize and visualize and it
is directly amenable to high-accuracy numerical verification by
comparing to full calculations of Maxwell’s equations. The cav-
ity was previously used as an example for non-linear switching
in [22], but without the explicit knowledge of the phase of the
coupling as provided with the present theory. As a second exam-
ple, in Section III-B, we consider the two-dimensional problem
of a side-coupled cavity next to a PC waveguide, for which the
properties of the QNM in the cavity was previously investigated
in [49] and [56]. To illustrate the usefulness of the theory in
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Fig. 3. Top: Transmission spectrum of a finite sized one-dimensional PC with
a cavity. The red dashed line indicates the single mode approximation to the
transmission, which is the underlying assumption of the CMT. Bottom: Complex
spectrum showing the discrete distribution of QNM resonance frequencies in
the complex frequency plane.

describing systems of coupled cavities, we also extend the ex-
ample and calculate the transmission through the system with
two side-coupled cavities in the top panel in Fig. 1.

A. One-Dimensional Example

We start by considering the one-dimensional system from
Fig. 1 consisting of a single PC cavity coupled to free space at
both sides. Despite the one-dimensional nature, the example is
well suited for illustrating the basic principles in CMT, since
many systems of interest in integrated optics and related exper-
iments consist of waveguides coupled to cavities in an in-line
configuration [4], [8] and thus are effectively one-dimensional.
The cavity is formed by two dielectric barriers on either side of
a central region. The barriers have relative permittivity εr = 13
and thickness 0.2a, where a is the lattice constant; the centers of
the barriers are at x = −2a, x = −a, x = a and x = 2a, respec-
tively. The background material is air, and the infinite periodic
arrangement of barriers in this case results in a PC with a large
band gap [15]. The top panel in Fig. 3 shows the transmission
spectrum for the system. Despite the finite size of the structure,
the band gap is clearly visible, and there is a clear resonance at
ωa/2πc ≈ 0.3. Each of the peaks in the transmission spectrum
is related to a specific QNM of the cavity, as can be clearly
appreciated when comparing to the complex QNM spectrum in
the bottom panel. For the present analysis, we shall focus on the
mode for which the real part is inside the band gap and which
we denote the cavity mode. The transmission due to this mode
alone closely resembles a Lorentzian, as expected for a mode
with a finite lifetime.

To calculate the cavity mode, we note that the one-
dimensional version of (11) may be written as

d
dx

f̃μ(x)
∣∣∣
x=±L

= ±inB
ω̃μ

c
f̃μ(x) (44)

where +/− refers to the right/left boundary of the calcula-
tion domain of length 2L. In this case, (4) may be solved
to arbitrary accuracy with any standard frequency domain
method, although the practical implementation is slightly
complicated by the fact that the eigenvalue ω̃ enters in the

Fig. 4. Real (solid red) and imaginary (dashed blue) parts as well as the abso-
lute value (dashed-dotted black) of the normalized cavity mode of interest in the
finite sized one-dimensional PC (indicated by the gray shaded areas). The mode
has a complex resonance frequency of ω̃a/2πc = 0.292462 − 0.000917 i, cor-
responding to Q = 160.

TABLE I
CMT PARAMETERS FOR THE COUPLED WAVEGUIDE-CAVITY-WAVEGUIDE

SYSTEM IN FIG. 4

Parameter Notation Value Units

Resonance frequency ω̃c 0.292462 - 0.000917i 2πc/a
Coupling σ1c 0.075812 - 0.005831i 1/

√
a

Group velocity vg 1 c
Center value f̃c(0) 0.912555 + 0.002628i 1/

√
a

The coupling constants are calculated with the phase convention that the wave-
guide modes are purely real at x = ±2.1a .

boundary condition via k̃ = ω̃/c. One approach is to solve
the eigenvalue problem with different trial values ω̃guess in the
boundary condition and look for cases in which the resulting
eigenvalue ω̃ is sufficiently close to the trial value. In this
way, one can map out the complex QNM spectrum as in
the bottom panel of Fig. 3, which shows the logarithm of
the norm |ω̃ − ω̃guess|, and a dark spot signifies the position
of a QNM frequency. For the one-dimensional example, the
cavity mode of interest, which we denote by μ = c, has
complex resonance frequency ω̃ca/2πc = 0.292462 −
0.000917i, corresponding to Q ≈ 160. This mode is shown in
Fig. 4, and for positions inside the cavity region it appears to
be localized from multiple reflections at the dielectric barriers.
The field profile resembles the total field in the one-dimensional
example in Fig. 1, but with the important difference that the
field in Fig. 4 is traveling away from the cavity at both sides and
diverges in the limits x → ±∞, as expected from the boundary
condition in (44) with Im{ω̃c} < 0. The QNM can be directly
normalized by (13) with the suggested regularization using di-
vergent series. To see the connection with other normalizations
in the literature, we note that for a translationally invariant
waveguide, we can choose the length of the unit cell a to be
arbitrarily small. In the limit of small unit cell, the QNM norm
in (13) with the proposed regularization reduces to the well
established norm for QNMs in one dimension [52], [53].

In one dimension, the general waveguide modes are sim-
ply plane waves of the form fn±(x, t) = exp{±ikx} with
x < −2.1a (n = 1) or x > 2.1a (n = 2), and we choose the
phase of the waveguide modes so that they are purely real at
the onset of the waveguides at x = ∓2.1a. In this case, the pa-
rameters of interest are listed in Table I. To assess the coupling
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Fig. 5. Top: Real and imaginary parts of the complex field in the cavity
center when illuminated by a plane wave from the left. Dashed black curves
show the CMT result ECMT

c (0, ω) = Γ(ω)E1+ f̃c(0). Bottom: Error ΔE =
|ECMT

c (0, ω) − Eref
c (0, ω)| between the two calculations in the top panel.

in (30), we solve the full scattering problem numerically and
use this as a reference. Fig. 5 shows a comparison between the
result from (29) and the reference calculation. The lower panel
shows the absolute error, which is less than 0.05 throughout the
relatively large bandwidth shown; at resonance it drops to ap-
proximately 0.01, corresponding to a relative error of less than
one part in a thousand.

1) Time Domain Behavior: We consider again the one-
dimensional example in Fig. 1, but consider now the time-
domain dynamics of the field in the center of the cavity. We
choose a Gaussian input pulse of the form

E1+(xD, t) = E0e−(ω ct/s)2
e−iω ct , (45)

where xD = −2.1a and s = Q/10, and the carrier frequency
of the input pulse is resonant with the cavity, ωc = Re{ω̃c}.
With this input, the single resonance response in (37) can be
calculated analytically and is given as

ECMT
c (t) = E0

√
πsvgσ1c

2ωc
e−iω̃ cteξ 2

[
1 − Erf

(
ξ − ωct

s

)]
,

(46)

where ξ = γcs/2ωc. From Fig. 3, however, it is clear that there
may be contributions from other modes to the dynamics. Indeed,
we consider these contributions to be the source of the errors
in the frequency domain comparison in Fig. 5. For the refer-
ence calculation, therefore, we use the full numerical Fourier
transform of Ec(0, ω). The top panel of Fig. 6 shows the time-
dependent electric field in the cavity center. In addition, we
show the magnitudes of the input field and the cavity field when
calculated using the CMT solution in (46). The latter represents
the output from typical CMT calculations based on (1) in which
the phase of the field is left unspecified. In contrast, (46) holds
the full information about the cavity field, including the phase.
The center panel shows the absolute error in the single-mode
CMT calculation, which is largest throughout the duration of the

Fig. 6. Top: Electric field in the center of the cavity as a function of time.
Thin red curve shows the total field of the reference calculation, and full black
curve shows the absolute value of the field as calculated by CMT in (46). Gray
shading indicates the electric field strength of the input pulse at the edge of
the cavity. Center: Error ΔE = |ECMT

c (0, t) − Eref
c (t)| in the single-mode CMT

calculation. Bottom: Zoom-in of the solutions at around 2γct = 0 showing the
real (red solid) and imaginary (blue dashed) parts of the total field in the cavity
center. Black dashed-dotted curves show the CMT result.

input pulse and drops to approximately one part in a thousand
at later times when the field is left to evolve freely. The bottom
panel shows a zoom-in of the solution to highlight the small
disagreement between the two solutions at around t = 0 when
the deviation is most pronounced.

B. Side-Coupled Cavities in Two Dimensions

We now turn to the slightly more complicated case of side-
coupled cavities in a PC made from dielectric cylinders in a
square lattice with spacing a. The rods have radius r = 0.2a
and relative permittivity εcyl = 8.9, and the background is as-
sumed to be air. Before moving on to the double cavity structure
in Fig. 1, we start by considering the case of a single side-
coupled cavity at the distance d = 2a from the center of the
waveguide [49], [56]. The cavity supports a cavity mode at the
complex frequency ω̃c = 0.39687 − 0.00136i, corresponding to
Q = 146 [49].

The waveguide supports forward and backwards propagating
modes f+(r) and f−(r), for which the phase is chosen so that
the modes are purely real in the plane through the center of the
cavity. The QNM of interest is symmetric with respect to this
plane [49], wherefore the complex coupling to the two wave-
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TABLE II
CMT PARAMETERS FOR A PC WAVEGUIDE WITH A SINGLE

SIDE-COUPLED CAVITY

Parameter Notation Value Units

Resonance frequency ω̃c 0.39668 − 0.00136i 2πc/a
Coupling σc 0.00544 - 0.12753i 1/

√
a

Group velocity vg 0.52294 c

guide modes is identical, σ+ = σ− = σc. As an approximation
for the Green tensor, we use the sum of the waveguide Green
tensor in (9) and the single-term QNM expansion of the Green
tensor in the cavity from (16). For use in transmission calcula-
tions, we focus on the case x > x′, for which we can write the
Green tensor as

G(r, r′, ω) ≈ i
c2

2ωvg
f+(r)f−(r′)Φ +

c2

2ω

f̃c(r)f̃c(r′)
ω̃c − ω

, (47)

where Φ is a general phase factor resulting from the influence
of the cavity on the field in the waveguide and therefore is
expected to tend to the limiting case of Φ = 1 when the cavity
is far from the waveguide. The QNMs in the cavity can be
related to the forward and backward propagating modes in the
single waveguide via the coupling parameters σ±, so that the
transmission becomes

T (ω) = Φ + i
vg

ω − ω̃c
σ+σ− = Φ + Γc(ω)σ2

c . (48)

To assess the transmission in (48) we solve the full wave prop-
agation problem numerically by means of the Fourier modal
method (FMM) employing a Bloch mode expansion and S-
matrix technique [51], [65], [66]. This method is well suited
for transmission calculations, since it gives immediate access
to the transmission between the guided modes on either side of
the cavity. We use the same numerical framework to calculate
the QNM in the cavity [48] and list the parameters of impor-
tance in setting up the CMT in Table II. All calculations were
performed using 101 Fourier components and 128 staircasing
steps in each unit cell, which explains the slight deviation be-
tween the resonance frequency in Table II and the one reported in
[49]. Fig. 7 shows the comparison between the CMT result and
the reference calculations. Using the simple choice of Φ = 1,
which we expect to be valid in the case of high Q-values, we find
a relatively good agreement between the reference calculation
and the CMT. The simple theory clearly captures the qualitative
behavior of the transmission and has a maximum absolute error
on the order of 0.05. Increasing the phase slightly improves the
agreement, and for Φ = exp{0.05i} the absolute error is on the
order of 0.001 on resonance, as shown in the bottom panel of
Fig. 7. The transmission through a side-coupled cavity shows a
minimum around the cavity mode frequency, which arises from
interference of the two terms in (48). The interference makes the
calculations very sensitive to the discretization, but by using the
same discretization for the QNM calculation and the reference
calculations, we expect any residual error due to discretization
to be the same in the two calculations; numerical investigations
with varying discretization confirm this. For this reason, we at-

Fig. 7. Top: Real and imaginary parts of the complex transmission reference
calculations for the PC waveguide with a single side-coupled cavity. Dashed
black curves show the CMT result when setting the phase factor Φ = 1 in (48).
Bottom: Error ΔT = |T CMT

c (ω) − T ref
c (ω)| between the two calculations in

the top panel using Φ = 1 (light gray and dashed curve) and Φ = exp{0.05i}
(dark gray and solid curve).

Fig. 8. Mode profiles showing the real part of the QNMs of interest
with complex resonance frequencies ω̃1 a/2πc = 0.3850 − 0.0008i (left) and
ω̃2 a/2πc = 0.4058 − 0.0006i (right). The QNMs are scaled to unity in the
center of the cavity closest to the waveguide.

tribute the small error to the inherent approximate nature of the
single mode expansion in the CMT.

1) Two Side-Coupled Cavities: As a last example, we return
to the double cavity structure in Fig. 1 to illustrate how the
QNM based approach to the CMT works in this case of a more
complicated system. The procedure is almost identical to that
of the single side-coupled cavity, the only difference being an
additional QNM in the bandwidth of interest. Fig. 8 shows the
two QNMs with field distributions which appear even and odd
with respect to the plane separating the cavities, as expected
from the limiting case of coupled cavities in an infinite PC with
no waveguide. Considering the symmetry with respect to the
plane through the centers of the cavities, however, both modes
are symmetric, and therefore the complex couplings to the two
waveguide modes are identical as in the case of the single side-
coupled cavity.
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TABLE III
CMT PARAMETERS FOR THE STRUCTURE IN FIG. 8 WITH TWO

SIDE-COUPLED CAVITIES

Parameter Notation Value Units

Resonance frequency ω̃1 0.38502 − 0.00075i 2πc/a
Resonance frequency ω̃2 0.40578 − 0.00060i 2πc/a
Coupling σ1 0.00711 - 0.09779i 1/

√
a

Coupling σ2 0.00009 - 0.08357i 1/
√

a
Group velocity vg 0.52294 c

Following an approach similar to the single cavity case, we
approximate the Green tensor as the sum of the waveguide Green
tensor and a QNM expansion of the Green tensor in the cavities
as

G(r, r′, ω) ≈ i
c2

2ωvg
f+(r)f−(r′)Φ +

c2

2ω

∑
μ

f̃μ(r)f̃μ(r′)
ω̃μ − ω

,

(49)

in which the sum runs over the two modes of interest, μ = 1
or μ = 2. The CMT approximation to the transmission then
becomes

T (ω) = Φ + Γ1(ω)σ2
1 + +Γ2(ω)σ2

2 . (50)

Because of the strong similarity between this system and that
of the single side-coupled cavity, we expect the influence of the
cavities on the field in the waveguide to be the same. There-
fore, this example also serves to justify the introduction of the
phenomenological phase factor Φ since, to a first approxima-
tion, we expect the extra phase to be independent of the extra
cavity.

The parameters of importance for setting up the CMT model
are listed in Table III, and the full complex transmission is shown
in Fig. 9 for both the cases of Φ = 1 and Φ = exp{0.05i}. As
in the previous case, we compare to independent reference cal-
culations performed with the same FMM code and using the
same numerical settings, whereby we argue that the observed
differences can be attributed to the inherent approximate na-
ture of the CMT. Using Φ = 1, the maximum errors are ap-
proximately twice as large as in the single cavity case, and
increasing the phase lowers the error dramatically to a few parts
in a thousand at the single cavity resonance frequency. The over-
all agreement appears less impressive than in the single cavity
case, with maximum errors on the order 0.06, which we attribute
to the larger bandwidth and the larger complexity of the material
system. Nevertheless, for many research or design applications,
this may be a small price to pay for the enormous simplification
and physical insight offered by the CMT approach.

IV. CONCLUSION

We have presented an alternative derivation of the (temporal)
coupled mode theory (CMT) for modeling of light propaga-
tion in systems of optical cavities coupled to waveguides. We
have argued, that the cavity modes can be naturally modeled as
quasinormal modes (QNMs) with complex resonance frequen-

Fig. 9. Top: Real and imaginary parts of the complex transmission reference
calculations for the coupled cavity–waveguide system with two cavities. Dashed
black curves show the CMT result when setting the phase factor Φ = 1 in (48).
Bottom: Error ΔT = |T CMT

c (ω) − T ref
c (ω)| between the two calculations in

the top panel using Φ = 1 (light gray and dashed curve) and Φ = exp{0.05i}
(dark gray and solid curve).

cies corresponding to a finite lifetime due to the field leaking
from the cavities. The leaky nature of the QNMs make them
distinctly different from the waveguide modes, which propa-
gate through the waveguide without decay. We have discussed
how one can use the field equivalence principle to couple the
two families of modes in a frequency domain description of the
coupled system. By transforming to the time domain, one can
recover the well-known CMT description, (1) and (2), in the
limit of high cavity Q-values. The theory itself, however, is not
limited to cavities with high Q-values, and we have assessed the
accuracy of the method by comparing to explicit reference cal-
culations in one and two dimensions with moderate Q-values.
The relative errors in both cases were found to be as low as
0.001, when allowing for a phenomenological phase in the case
of the side-coupled cavities.

This alternative derivation shows that the cavity modes in
CMT can be explicitly defined as the QNMs that leak through
the waveguides (as well as other channels in general), thus re-
moving much of the ambiguity surrounding the calculation and
normalization of these modes. From a practical modeling point
of view, we expect the theory to be useful in modeling and
design of optical experiments and devices for which details of
the phase relation between different transmission channels are
of importance, as in the case of two side-coupled cavities, for
example. Also, the definition of the cavity modes as QNMs
provides a framework for setting up more advanced models of
cavity-enhanced non-linear dynamics and general light-matter
interaction in a precise and unambiguous way. Last, we remark
that the use of the field equivalence principle is not restricted to
QNMs in cavities coupled to waveguides, and we expect it to be
useful also in other material systems for modeling the coupling
of a general incoming field to the QNMs of optical or plasmonic
resonators.
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APPENDIX A
EXPANDING QNMS ON WAVEGUIDE MODES

Expansion of the QNMs in terms of the analytical continua-
tion of the waveguide modes in (12) becomes particularly clear
in a modal picture [51], [65], [66], where, for positions in the
waveguide sections, the electric field QNMs f̃μ(r) and the mag-
netic field QNMs g̃μ(r) are expanded on the full set of Bloch
modes traveling away from the cavity, including propagating,
evanescent and non-guided modes, as [48]

f̃μ(r) =
∑

n

σμn fn−(r, ω̃μ) (51)

g̃μ(r) =
∑
m

σμmgm−(r, ω̃μ). (52)

The Bloch modes are computed at the complex frequency ω̃μ ,
and σμn are complex expansion coefficients. In a modal picture,
therefore, the σμn corresponding to the guided modes can be
obtained directly from the scattering matrices describing cou-
pling of Bloch modes in the various periodic elements. In the
general case, they may be calculated by suitable projections of
the QNMs onto the analytical continuation of the waveguide
modes by exploiting the orthogonality relation [65]

∫

A

[
fm− × gn+ − fn+ × gm−

] · ndA = δmnNn , (53)

where Nn is a normalization constant. Here, and in (54) be-
low, we have suppressed the explicit position and frequency
dependence of the modes. Formation of the difference f̃μ(r) ×
gn+(r, ω̃) − fn+(r, ω̃) × g̃μ(r) and integration over the plane
D perpendicular to the waveguide then leads to

σμn =

∫
D

[
f̃μ × gn+ − fn+ × g̃μ

] · ndA∫
D

[
fn− × gn+ − fn+ × gn−

] · ndA
, (54)

where all modes are evaluated at ω̃μ .

APPENDIX B
THE COUPLING PARAMETER σμn

A key assumption in the application of the field equivalence
principle for the derivation of the CMT, is that the cavity modes
can be related to the waveguide modes at the real part of the
cavity resonance frequency as in (26). To zero’th order, this
relation follows from the definition of the waveguide radiation
condition, whereby, at positions sufficiently far from the cavity
in waveguide n, the QNM f̃μ(r) can be written via analytical
continuation in terms of the waveguide mode fn−(r, ω̃μ) trav-
eling away from the cavity. Because both sets of modes are
normalized, the expansion coefficient σμn is in general a non-
trivial complex number, but for any fixed choice of modes, σμn

is well defined. From (12), with ω̃μ = ωμ − iγμ , and expanding
around ω̃μ = ωμ we find

f̃μ(r) ≈ σμn fn−(r, ωμ) − iσμnγμ∂ω fn−(r, ωμ). (55)

Using the Bloch form of the waveguide modes in (6) we can
investigate the second term by rewriting the derivative as

∂ω fn−(r, ωμ) =
1
vg

∂k fn−(r, ωμ) (56)

=
1
vg

eik·r
[
i [ek · r]uk(r) + ∂kuk(r)

]
, (57)

where ek denotes a unit vector in the direction of the waveguide.
In this way, we can rewrite (55) as a position dependent expan-
sion onto a waveguide mode at real frequencies and a correction
term as

f̃μ(r) ≈ σμn

[
1 +

γμ

vg
[ek · r]

]
fn−(r, ωμ)

− i
σμnγμ

vg
eik·r∂kuk(r). (58)

The waveguide modes are determined only up to an arbitrary
phase factor that we may write as exp{−ik · rD}, where rD is
in the plane D. Thus, the second term in the square brackets can
be regarded as small for |x − xD | � vg/γμ . Since the end goal
is to describe the QNMs in terms of the waveguide modes, we
generally choose the plane to be as close to the cavity section as
possible, yet still within the (possibly discrete) translationally
invariant part of the geometry defining the waveguide. This
distinction between the different parts of the geometry is directly
built in to the FMM.

APPENDIX C
USE OF THE DYSON EQUATION

The Dyson equation provides the Green tensor of a general
structure defined by the relative permittivity εr(r) in terms of
the known Green tensor GB(r, r′, ω) of a reference structure
defined by εB(r) as

G(r, r′, ω) = GB(r, r′, ω)

+
(ω

c

)2
∫

V

GB(r, r′′, ω)Δεr(r′′)G(r′′, r′, ω)dV, (59)

in which Δεr(r) = εr(r) − εB(r) denotes the difference in rela-
tive permittivity between the two structures. To apply the Dyson
equation to set up a relatively simple model for a general cou-
pled cavity-waveguide structure, we can consider the change
Δεr(r) to be the change in permittivity defining the optical cav-
ity in an otherwise (possibly discrete) translationally invariant
background for which we can easily calculate or estimate the
Green tensor. With such a choice, Δεr(r), and hence the inte-
gral, will be non-zero only inside the cavity, where we expect
the expansion of the Green tensor on one or just a few QNMs
to be adequate. Therefore, we write

G(r, r′, ω) ≈ GB(r, r′, ω)

+
(ω

c

)2
∫

V

GB(r, r′′, ω)Δεr(r′′)
c2

2ω

∑
μ

f̃μ(r′′)f̃μ(r′)
ω̃μ − ω

dV.

(60)
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Next, we expand the background Green tensor on the waveguide
modes of the reference structure, and assuming the waveguide
modes to be approximately zero at positions within the cavity,
we have GB(r, r′, ω) ≈ 0, so

G(r, r′, ω) ≈ c2

2ω

∑
μ

f̃μ(r)f̃μ(r′)
ω̃μ − ω

, (61)

for r and r′ both in the cavity. This, in turn, reduces the overall
approximation of the Green tensor to the physically appealing
form in (31).

APPENDIX D
ENERGY CONSERVATION

For a single mode cavity, the total power P leaking from the
cavity can be split in different channels Pn− as

P = P1− + P2− + ... = −2[γ1 + γ2 + ...]Ucav(t), (62)

where Ucav(t) denotes the time-averaged energy in the cavity,
and the sign convention is such that the power is positive for
energy going into the cavity. For a cavity with electric field given
as Eμ(r, t) = Eμ(t)f̃μ(r) and a decay channel corresponding
to waveguide n, we may write the power as

Pn− =
1

2μ0

∫

Dn

Re
{
Eμ(r, t) × B∗

μ(r, t)
} · ndA (63)

≈ 1
2μ0

|Eμ(t)|2
∫

Dn

Re

{
σμn fn−(r, ωμ)

×
[

i
ω
∇× [

σ∗
μn f ∗n−(r, ωμ)

] ]}
· ndA (64)

= −|σμn |2 |Eμ(t)|2
|En+(ωμ)|2 Pn+ , (65)

where Pn+ is the average power carried by an incoming electro-
magnetic field of the form Ein(r, ωμ) = En+(ωμ)fn+(r, ωμ),
cf. (18) and (19). Therefore, since Pn− = −2γnUcav(t) and
Pn+ = vgε0 |En+(ωμ)|2/2, we find that

|σμn |2 ≈ 4γnUcav(t)
vgε0 |Eμ(t)|2 . (66)

For a high-Q cavity, one can choose the phase of the QNMs so
that the fields are almost entirely real and so that

Ucav(t) =
1
2
ε0

∫
εr(r)Eμ(r, t) · E∗

μ(r, t)dV

≈ 1
2
ε0 |Eμ(t)|2〈〈f̃μ |f̃μ〉〉, (67)

and, since the QNMs are assumed to be normalized, we can
then express the average energy in the cavity as Ucav(t) ≈
|Eμ(t)|2ε0/2. Inserting in (66) we find that

|σμn |2 ≈ 2
γn

vg
, (68)

so that the squared norm of the expansion coefficient σμn is
the ratio of the rate of energy leakage through the waveguide to

the group velocity in the waveguide. In the case of a symmetric
two-port cavity we have simply |σμn |2 = γμ/vg.
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